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NAS RK is pleased to announce that News of NAS RK. Series of geology and technical 
sciences scientific journal has been accepted for indexing in the Emerging Sources Citation 
Index, a new edition of Web of Science. Content in this index is under consideration by 
Clarivate Analytics to be accepted in the Science Citation Index Expanded, the Social 
Sciences Citation Index, and the Arts & Humanities Citation Index. The quality and depth 
of content Web of Science offers to researchers, authors, publishers, and institutions sets it 
apart from other research databases. The inclusion of News of NAS RK. Series of geology 
and technical sciences in the Emerging Sources Citation Index demonstrates our dedication 
to providing the most relevant and influential content of geology and engineering sciences 
to our community.

Қазақстан Республикасы Ұлттық ғылым академиясы «ҚР ҰҒА Хабарлары. Геология 
және техникалық ғылымдар сериясы» ғылыми журналының Web of Science-тің 
жаңаланған нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын 
хабарлайды. Бұл индекстелу барысында Clarivate Analytics компаниясы журналды 
одан әрі the Science Citation Index Expanded, the Social Sciences Citation Index және the 
Arts & Humanities Citation Index-ке қабылдау мәселесін қарастыруда. Webof Science 
зерттеушілер, авторлар, баспашылар мен мекемелерге контент тереңдігі мен 
сапасын ұсынады. ҚР ҰҒА Хабарлары. Геология және техникалық ғылымдар сериясы 
Emerging Sources Citation Index-ке енуі біздің қоғамдастық үшін ең өзекті және 
беделді геология және техникалық ғылымдар бойынша контентке адалдығымызды 
білдіреді.

НАН РК сообщает, что научный журнал «Известия НАН РК. Серия геологии и 
технических наук» был принят для индексирования в Emerging Sources Citation Index, 
обновленной версии Web of Science. Содержание в этом индексировании находится 
в стадии рассмотрения компанией Clarivate Analytics для дальнейшего принятия 
журнала в the Science Citation Index Expanded, the Social Sciences Citation Index и 
the Arts & Humanities Citation Index. Web of Science предлагает качество и глубину 
контента для исследователей, авторов, издателей и учреждений. Включение 
Известия НАН РК. Серия геологии и технических наук в Emerging Sources Citation 
Index демонстрирует нашу приверженность к наиболее актуальному и влиятельному 
контенту по геологии и техническим наукам для нашего сообщества.
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webofscience.com/wos/author/record/53680261
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СНОУ Дэниел, PhD, ассоциированный профессор, директор Лаборатории водных наук Университета 
Небраски (штат Небраска, США), https://www.scopus.com/authid/detail.uri?authorId=7103259215, https://
www.webofscience.com/wos/author/record/1429613

ЗЕЛЬТМАНН Раймар, PhD, руководитель исследований в области петрологии и месторождений 
полезных ископаемых в Отделе наук о Земле Музея естественной истории (Лондон, Англия), https://www.
scopus.com/authid/detail.uri?authorId=55883084800, https://www.webofscience.com/wos/author/record/1048681

ПАНФИЛОВ Михаил Борисович, доктор технических наук, профессор Университета Нанси (Нанси, 
Франция), https://www.scopus.com/authid/detail.uri?authorId=7003436752, https://www.webofscience.com/
wos/author/record/1230499

ШЕН Пин, PhD, заместитель директора Комитета по горной геологии Китайского геологического 
общества, член Американской ассоциации экономических геологов (Пекин, Китай), https://www.scopus.
com/authid/detail.uri?authorId=57202873965, https://www.webofscience.com/wos/author/record/1753209

ФИШЕР Аксель, ассоциированный профессор, PhD, технический университет Дрезден (Дрезден, 
Берлин), https://www.scopus.com/authid/detail.uri?authorId=35738572100, https://www.webofscience.com/
wos/author/record/2085986

АГАБЕКОВ Владимир Енокович, доктор химических наук, академик НАН Беларуси, почетный 
директор Института химии новых материалов (Минск, Беларусь), https://www.scopus.com/authid/detail.
uri?authorId=7004624845

КАТАЛИН Стефан, PhD, ассоциированный профессор, Технический университет (Дрезден, 
Германия), https://www.scopus.com/authid/detail.uri?authorId=35203904500, https://www.webofscience.com/
wos/author/record/1309251

САГИНТАЕВ Жанай, PhD, ассоциированный профессор, Назарбаев университет (Астана, Казахстан), 
https://www.scopus.com/authid/detail.uri?authorId=57204467637 , https://www.webofscience.com/wos/author/
record/907886

ФРАТТИНИ Паоло, PhD, ассоциированный профессор, Миланский университет Бикокк (Милан, 
Италия), https://www.scopus.com/authid/detail.uri?authorId=56538922400 НУРПЕИСОВА Маржан 
Байсановна – доктор технических наук, профессор Казахского Национального исследовательского 
технического университета им. К.И. Сатпаева, (Aлматы, Казахстан), https://www.scopus.com/authid/detail.
uri?authorId=57202218883, https://www.webofscience.com/wos/author/record/AAD-1173-2019

РАТОВ Боранбай Тойбасарович, доктор технических наук, профессор, заведующий кафедрой 
«Геофизика и сейсмология», Казахский Национальный исследовательский технический университет им. 
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Abstract. Currently, the problem of increasing the operational properties 
of machine parts and mechanisms operating under variable loads or subject to 
abrasion is very relevant. Surface plastic deformation treatment using rolling of the 
surface of parts with steel cylindrical rollers is the most effective way to increase 
the durability of parts. With this method of finishing and hardening treatment, metal 
deformation is characterized by a significant influence of strain rates on stresses. 
This necessitates the calculation of stresses and deformations based on the equation 
of state of rheonomic bodies.

In the article, taking into account Coulomb’s law of friction on the contact 
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surface, the formulation of a one-dimensional problem of longitudinal running-
in of a deposited layer by a cylindrical roller is considered. The solution of the 
problem involves calculating the stress-strain state in the deformation site based on 
the creep-hardening theory. A numerical solution of a one-dimensional nonlinear 
problem has been performed and the components of stresses and force factors of 
the technological process have been determined using modern numerical analysis 
systems, comparatively general formulas have been obtained for calculating the 
stress-strain state, pressure and friction forces on the contact surface, forces and 
moments acting on the roller.

The results of the study are applicable in repair production to solve actual 
practical problems of restoring the operational properties of machine parts.

Keywords: surface plastic deformation, stress, one–dimensional problem, 
creep-hardening theory, deposited layer, recovery, running-in, stress-strain state, 
cylindrical rollers, contact surface.
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Аннотация. Қазіргі уақытта ауыспалы жүктемелер жағдайында жұмыс 
істейтін немесе тозуға ұшырайтын машиналар мен механизмдердің 
бөлшектерінің пайдалану қасиеттерін арттыру мәселесі өте өзекті. 
Бөлшектердің бетін болат цилиндрлік роликтермен сынау арқылы беттік 
пластикалық деформация әдісімен өңдеу бөлшектердің беріктігін арттырудың 
ең тиімді әдісі болып табылады. Әрлеу және қатайту өңдеудің бұл әдісімен 
металдардың деформациясы кернеулерге деформация жылдамдығының 
айтарлықтай әсерімен сипатталады. Бұл реономикалық денелердің күй 
теңдеуіне негізделген кернеулер мен деформацияларды есептеу қажеттілігін 
талап етеді.

Мақалада контакт бетіндегі кулонның үйкеліс заңын ескере отырып, 
балқытылған қабатты цилиндрлік роликпен бойлық кесудің бір өлшемді 
мәселесін қою қарастырылады. Мәселені шешу жылжу – қатаю теориясы 
негізінде деформация ошағындағы кернеулі деформацияланған күйді 
есептеуді қамтиды. Бір өлшемді сызықтық емес есептің сандық шешімі 
орындалды және қазіргі заманғы сандық талдау жүйелерін қолдана отырып, 
технологиялық процестің кернеулері мен күш факторларының компоненттері 
анықталды, кернеудің деформацияланған күйін, жанасу бетіндегі қысым мен 
үйкеліс күштерін, роликке әсер ететін күштер мен сәттерді есептеу үшін 
салыстырмалы түрде жалпы формулалар алынды.

Зерттеу нәтижелері механизмдер мен машиналар бөлшектерінің пайдалану 
қасиеттерін қалпына келтірудің өзекті практикалық міндеттерін шешу үшін 
жөндеу өндірісінде қолданылады.

Түйін сөздер: беттік пластикалық деформация, кернеу, бір өлшемді 
тапсырма, сусымалы  қатайту теориясы, балқытылған қабат, қалпына келтіру, 
сыну, кернеулі деформацияланған күй, цилиндрлік роликтер, жанасу беті.
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Аннотация. В настоящее время очень актуальна проблема повышения 
эксплуатационных свойств деталей машин и механизмов, работающих в 
условиях переменных нагрузок или подвергающихся истиранию. Обработка 
методом поверхностного пластического деформирования с использованием 
обкатки поверхности деталей стальными цилиндрическими роликами 
является наиболее эффективным способом повышения долговечности деталей.  
При этом способе отделочно-упрочняющей обработки, деформирование 
металлов характеризуется значительным влиянием скоростей деформаций на 
напряжения.  Это диктует необходимость выполнения  расчета  напряжений и 
деформаций  на основе уравнения состояния реономных тел.

В статье, с учетом закона трения Кулона на поверхности контакта 
рассмотрена  постановка одномерной задачи продольной обкатки 
наплавленного слоя цилиндрическим роликом. Решение задачи включает   
расчет напряженно-деформированного состояния в очаге деформации на 
основе теории ползучести – упрочнения.  Выполнено численное решение 
одномерной нелинейной задачи и определены компоненты напряжений и 
силовых факторов технологического процесса с использованием современных 
систем численного анализа, получены сравнительно общие формулы для 
расчета напряженно-деформированного состояния, давления и сил трения на 
поверхности контакта, усилий и моментов, действующих на ролик.        

Результаты исследования применимы в ремонтном производстве 
для решения актуальных практических задач по  восстановлению 
эксплуатационных  свойств  деталей механизмов и машин.

Ключевые слова: поверхностное пластическое деформирование, 
напряжение, одномерная задача, теория ползучести-упрочнения, 
наплавленный слой, восстановление, обкатка, напряженно-деформированное 
состояние, цилиндрические ролики,  поверхность контакта

Introduction. The most effective way to increase the strength of parts is the 
method of finishing and hardening using the technology of testing the surface of 
parts with rollers. This method provides a low roughness of the surface of the parts 
by depositing metal along the thickness in the seam area to create plastic tensile 
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deformations in the longitudinal and transverse directions, residual compressive 
stresses in the surface layers and the formation of fine grain of the structure. The 
testing process with steel cylindrical rollers ensures the complete elimination of 
residual deformations, provided that the plastic tensile deformations in the layer 
and adjacent parts of the base metal formed as a result of the tests are equal to the 
residual plastic compression deformations in these areas. At the same time, the 
residual longitudinal stresses may be close to zero (Grechnikov, 2021; Smelyansky, 
2005; Sherov, et al, 2022).

In order to properly account for the deposition effect by the thickness of the 
heated material, to assess changes in residual stresses and deformations, it is 
necessary to study the stress-strain state of the metal layer, on the basis of which 
the deformation force and total power are calculated. It is advisable to calculate 
the technological processes of high-temperature metal processing on the basis of 
the equations of state of the simplest theories. In this regard, the most common 
is the theory of hardening. In this case, unlike the usual rolling process between 
rotating drive rolls, the deforming roller performs a flat parallel movement, and the 
contact surfaces have different friction conditions. The deformation of metals in the 
process of high-temperature processing is characterized by a significant influence 
of the deformation rate on stresses. This requires the calculation of stresses and 
deformations based on the equation of state of rheonomic bodies.

Materials and basic methods.
 To determine the relationship between deformations, stresses, their rate of 

change and time in the simplest conditions of uniaxial stretching, a flowability 
theory is needed that allows describing deformations of the material, in general, 
time-varying stresses and deformations, on the basis of the simplest tests of the 
material, as well as providing the definition of the law of deformation change in 
accordance with a given law.voltage changes and vice versa. In an exceptional case, 
the theory of crawling allows you to build relaxation curves from serial curves. The 
simplest, but the best way to test the theory of creep is to compare the results of 
an experimental study of relaxation under constant deformation with data from the 
theory of creep.     

The purpose of this work is to develop a method for calculating the one-
dimensional problem of plastic deformation of the deposited layer during the 
restoration of flat surfaces of parts, to obtain relatively general formulas for 
calculating the stress-strain state, pressure and friction forces on the contact surface, 
forces and moments acting on the roller.

 The research in the article will be based on the work of authors from near and 
far abroad in the field of finishing and hardening treatment by methods of surface 
plastic deformation of parts operating under wear conditions under high loads using 
steel cylindrical rollers. The research database contains information on the research 
activities of research institutes and centers of applied experimental research 
involved in solving urgent problems of improving the performance properties 
of machine parts and mechanisms operating under variable loads or subjected to 
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abrasion. Empirical and theoretical research methods are used in writing the paper: 
review, synthesis, numerical analysis, modeling.

Results. 
Nowadays, simple creep theories of materials are increasingly used to describe the 

creep processes of metals. The application of elementary theories in metalworking 
issues makes it possible to achieve reliable results with minimal labor and time. 
There are three simple theories: aging, currents, and hardening. As is known, 
the theory of aging does not correspond to the results of experimental studies in 
comparison with the theory of flow and hardening and does not better reflect the 
creep process under sharply varying loads. It should also be noted the theory of 
structural parameters of Yu.N. Rabotnov, a special case of which is the theory of 
flow and the theory of hardening. Studies show that the theory of hardening is 
in better agreement with experimental data (Oteniy, et al 2006; Akhmedov, et al, 
2020). Therefore, to study the technological problem of testing the molten layer, 
we use the equation of state of the material based on the theory of hardening. 
The construction of the creep theory is usually performed for the simplest case of 
uniaxial stretching, and then for the general state of an inhomogeneous stress state. 

According to the theory of solidification, it is assumed that there is a certain 
relationship between the rate of bulk deformation, stress and bulk deformation at a 
given temperature:

processing is characterized by a significant influence of the deformation rate on stresses. This 
requires the calculation of stresses and deformations based on the equation of state of rheonomic 
bodies. 

Materials and basic methods. 
 To determine the relationship between deformations, stresses, their rate of change and 

time in the simplest conditions of uniaxial stretching, a flowability theory is needed that allows 
describing deformations of the material, in general, time-varying stresses and deformations, on 
the basis of the simplest tests of the material, as well as providing the definition of the law of 
deformation change in accordance with a given law.voltage changes and vice versa. In an 
exceptional case, the theory of crawling allows you to build relaxation curves from serial curves. 
The simplest, but the best way to test the theory of creep is to compare the results of an 
experimental study of relaxation under constant deformation with data from the theory of creep.      

The purpose of this work is to develop a method for calculating the one-dimensional 
problem of plastic deformation of the deposited layer during the restoration of flat surfaces of 
parts, to obtain relatively general formulas for calculating the stress-strain state, pressure and 
friction forces on the contact surface, forces and moments acting on the roller. 

 The research in the article will be based on the work of authors from near and far abroad 
in the field of finishing and hardening treatment by methods of surface plastic deformation of 
parts operating under wear conditions under high loads using steel cylindrical rollers. The 
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From equation (4), as a special case (when m=0), an equation is obtained that is used to 

study the deformation of purely plastic materials, including an ideally rigid plastic material 
(when 𝑚𝑚𝑚𝑚 = 0,𝑛𝑛𝑛𝑛 = 0). 

For numerical calculations of the stress-strain state of the layer in the deformation focus, it 
is necessary to know the values of constant materials at the temperature of the shape change. The 
material constants (parameters of the equation of state) are determined by processing creep 
curves. The equation of state (3) describes creep curves with a pronounced hardening section 
(the first section) and the equation of state (6) describes creep curves on which there is no 
hardening section and a fixed creep section is clearly expressed (the second section).  

 Discussion. 
Methods for determining the parameters of the equation of state are given in (Feldstein, et 

al, 2005; Skvortsov, et al, 2016; Stepanova, et al, 2009). The degree of coincidence of 
experimental and theoretical creep curves depends on the accuracy of determining the 
parameters of the equation of state (material constants). The reliability of the calculation of the 
stress-strain state and the power parameters of the technological process depends on the accuracy 
of the material constants. Consider the deformation of the material under the action of an 
absolutely rigid cylindrical body (roller), which performs a plane-parallel motion in the plane of 
the drawing (Fig.1). The deformable material is located on a rigid surface.  Denote the speed of 
movement of the center of the roller by 𝜐𝜐𝜐𝜐0, and the angular velocity of rotation  - 𝜔𝜔𝜔𝜔. It is believed 
that they are constant values in time. Components of the velocity of movement of any point on 
the contact surface of the material with the roller in the deformation focus (Fig.1): 
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Suppose that the stress-strain state of the material changes only along the y coordinate.  

Then from the equilibrium condition of the elementary volume of the body we have the 
following equations (Fig.2.): 
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hardening section and a fixed creep section is clearly expressed (the second section).  

 Discussion. 
Methods for determining the parameters of the equation of state are given in (Feldstein, et 

al, 2005; Skvortsov, et al, 2016; Stepanova, et al, 2009). The degree of coincidence of 
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absolutely rigid cylindrical body (roller), which performs a plane-parallel motion in the plane of 
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viscous body, which is widely used in the analysis of flow in a state of super plasticity:
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where: K, ν - the constants of the material at a certain temperature.
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curves. The equation of state (3) describes creep curves with a pronounced hardening section 
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 Discussion. 
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     𝜐𝜐𝜐𝜐𝑦𝑦𝑦𝑦 = 𝜐𝜐𝜐𝜐0 − 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔cos𝛼𝛼𝛼𝛼; 𝜐𝜐𝜐𝜐𝑧𝑧𝑧𝑧 = −𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔sin𝛼𝛼𝛼𝛼.                                  (7) 
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                                                  𝜎𝜎𝜎𝜎𝑧𝑧𝑧𝑧 = 𝑝𝑝𝑝𝑝 − qtg𝛼𝛼𝛼𝛼 ,                                                                    (9) 

where: 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦,𝜎𝜎𝜎𝜎𝑧𝑧𝑧𝑧 − stress components, 𝑝𝑝𝑝𝑝, 𝑞𝑞𝑞𝑞 − the pressure and intensity of the friction forces, 
respectively, on the contact surface of the material with the roller, 𝑞𝑞𝑞𝑞1 - the intensity of the friction 
forces of a material with a rigid surface. 

In technological problems of this kind in a one-dimensional formulation, the equivalent 
voltage   𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒  is approximately calculated as (Вulekbayeva, et al, 2023): 

               𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 − 𝜎𝜎𝜎𝜎𝑧𝑧𝑧𝑧                                                                    (10) 

To simplify the solution, we assume that the friction on the contact surface of the material 
with the roller obeys Coulomb's law  𝑞𝑞𝑞𝑞 = 𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝, moreover, the proportionality coefficient is 
constant over the entire contact surface. The intensity of the friction forces on the contact surface 
of the material with a rigid surface is assumed to be proportional to the maximum tangential 
stress:  

                   𝑞𝑞𝑞𝑞1 = χτmax = 𝜒𝜒𝜒𝜒(𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 − 𝜎𝜎𝜎𝜎𝑧𝑧𝑧𝑧 ) 2⁄ = χσ𝑒𝑒𝑒𝑒 2⁄   ,                                         (11) 

where:𝜒𝜒𝜒𝜒 - constant coefficient of proportionality. By =1 there is sticking. 

 

Figure 1 - Cylindrical roller running-in scheme: 

R- roller radius, 𝛥𝛥𝛥𝛥ℎ- changing the layer thickness, ℎ0- thickness of the rolled layer, 𝛼𝛼𝛼𝛼0 − 
maximum contact angle, 𝛼𝛼𝛼𝛼- angular coordinate of the point  m,  𝜔𝜔𝜔𝜔- angular rotation speed of the 
roller, �̄�𝑉𝑉𝑉0 − velocity vector of movement   the center of the roller , �̄�𝑉𝑉𝑉𝑚𝑚𝑚𝑚- the velocity vector of the 

point m on the contact surface , �̄�𝑉𝑉𝑉𝑚𝑚𝑚𝑚0- the vector of the rotation speed of the point m relative to the 
center of the roller. 
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Figure 2 - To the derivation of the equilibrium equation of the element 

It is obvious from Fig. 2 that ℎ = ℎ0 + 𝜔𝜔𝜔𝜔(1 − cos𝛼𝛼𝛼𝛼), dy = 𝜔𝜔𝜔𝜔cos𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼. Considering in equation 
(8) the relations (9), (10), (11), as well as the last equalities, after simple transformations, a 
differential equation is obtained: 

         𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝜓𝜓𝜓𝜓1(𝛼𝛼𝛼𝛼)𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼),                                                (12) 

where are the designations introduced: 

𝜓𝜓𝜓𝜓1(𝛼𝛼𝛼𝛼) = 1
ℎ0 𝑅𝑅𝑅𝑅⁄ +1−cos𝑑𝑑𝑑𝑑

(sin𝛼𝛼𝛼𝛼 + sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

)

𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 1
ℎ0 𝑅𝑅𝑅𝑅⁄ +1−cos𝑑𝑑𝑑𝑑

(sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

+ 𝜒𝜒𝜒𝜒
2

cos𝛼𝛼𝛼𝛼)𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒
                                (13) 

 
           Stress-strain state of the layer and power parameters of the technological process 
To integrate equation (12), we have the boundary condition: 𝛼𝛼𝛼𝛼 = 0,𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 0. Then the 

solution of the equation will be written as follows: 

     𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = exp(−∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑
0 )∫ 𝜓𝜓𝜓𝜓2exp(∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0
𝑑𝑑𝑑𝑑
0                                                 (14) 

For small contact angles, the solution of the differential equation (12) has the form: 

 

𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝑅𝑅𝑅𝑅
ℎ0

exp(−𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑
ℎ0

) �(1 + 𝜇𝜇𝜇𝜇2)∫ 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑
ℎ0

)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑
0 + (𝜒𝜒𝜒𝜒

2
+ 𝜇𝜇𝜇𝜇)∫ 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑

ℎ0
)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0 � .   (15) 

 

As can be seen from the solutions obtained, in order to calculate the stresses, it is necessary 
to describe the state of the deformable material. Let's take the equation of state according to the 
theory of hardening (4): 

 

𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝜅𝜅𝜅𝜅𝑛𝑛𝑛𝑛 , 

where:𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 − permanent materials; 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒- equivalent strain rate;  𝜅𝜅𝜅𝜅 = ∫ 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒dt𝑡𝑡𝑡𝑡
0 − the Udquist 

parameter. 
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to describe the state of the deformable material. Let's take the equation of state according to the 
theory of hardening (4): 

 

𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝜅𝜅𝜅𝜅𝑛𝑛𝑛𝑛 , 

where:𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 − permanent materials; 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒- equivalent strain rate;  𝜅𝜅𝜅𝜅 = ∫ 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒dt𝑡𝑡𝑡𝑡
0 − the Udquist 

parameter. 

, 

 

Figure 2 - To the derivation of the equilibrium equation of the element 

It is obvious from Fig. 2 that ℎ = ℎ0 + 𝜔𝜔𝜔𝜔(1 − cos𝛼𝛼𝛼𝛼), dy = 𝜔𝜔𝜔𝜔cos𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼. Considering in equation 
(8) the relations (9), (10), (11), as well as the last equalities, after simple transformations, a 
differential equation is obtained: 

         𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝜓𝜓𝜓𝜓1(𝛼𝛼𝛼𝛼)𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼),                                                (12) 

where are the designations introduced: 

𝜓𝜓𝜓𝜓1(𝛼𝛼𝛼𝛼) = 1
ℎ0 𝑅𝑅𝑅𝑅⁄ +1−cos𝑑𝑑𝑑𝑑

(sin𝛼𝛼𝛼𝛼 + sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

)

𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 1
ℎ0 𝑅𝑅𝑅𝑅⁄ +1−cos𝑑𝑑𝑑𝑑

(sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

+ 𝜒𝜒𝜒𝜒
2

cos𝛼𝛼𝛼𝛼)𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒
                                (13) 

 
           Stress-strain state of the layer and power parameters of the technological process 
To integrate equation (12), we have the boundary condition: 𝛼𝛼𝛼𝛼 = 0,𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 0. Then the 

solution of the equation will be written as follows: 

     𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = exp(−∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑
0 )∫ 𝜓𝜓𝜓𝜓2exp(∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0
𝑑𝑑𝑑𝑑
0                                                 (14) 

For small contact angles, the solution of the differential equation (12) has the form: 

 

𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝑅𝑅𝑅𝑅
ℎ0

exp(−𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑
ℎ0

) �(1 + 𝜇𝜇𝜇𝜇2)∫ 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑
ℎ0

)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑
0 + (𝜒𝜒𝜒𝜒

2
+ 𝜇𝜇𝜇𝜇)∫ 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑

ℎ0
)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0 � .   (15) 

 

As can be seen from the solutions obtained, in order to calculate the stresses, it is necessary 
to describe the state of the deformable material. Let's take the equation of state according to the 
theory of hardening (4): 

 

𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝜅𝜅𝜅𝜅𝑛𝑛𝑛𝑛 , 

where:𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 − permanent materials; 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒- equivalent strain rate;  𝜅𝜅𝜅𝜅 = ∫ 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒dt𝑡𝑡𝑡𝑡
0 − the Udquist 

parameter. 

 
Considering in equation (8) the relations (9), (10), (11), as well as the last equalities, 
after simple transformations, a differential equation is obtained:

 

Figure 2 - To the derivation of the equilibrium equation of the element 

It is obvious from Fig. 2 that ℎ = ℎ0 + 𝜔𝜔𝜔𝜔(1 − cos𝛼𝛼𝛼𝛼), dy = 𝜔𝜔𝜔𝜔cos𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼. Considering in equation 
(8) the relations (9), (10), (11), as well as the last equalities, after simple transformations, a 
differential equation is obtained: 

         𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝜓𝜓𝜓𝜓1(𝛼𝛼𝛼𝛼)𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼),                                                (12) 

where are the designations introduced: 

𝜓𝜓𝜓𝜓1(𝛼𝛼𝛼𝛼) = 1
ℎ0 𝑅𝑅𝑅𝑅⁄ +1−cos𝑑𝑑𝑑𝑑

(sin𝛼𝛼𝛼𝛼 + sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

)

𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 1
ℎ0 𝑅𝑅𝑅𝑅⁄ +1−cos𝑑𝑑𝑑𝑑

(sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

+ 𝜒𝜒𝜒𝜒
2

cos𝛼𝛼𝛼𝛼)𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒
                                (13) 

 
           Stress-strain state of the layer and power parameters of the technological process 
To integrate equation (12), we have the boundary condition: 𝛼𝛼𝛼𝛼 = 0,𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 0. Then the 

solution of the equation will be written as follows: 

     𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = exp(−∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑
0 )∫ 𝜓𝜓𝜓𝜓2exp(∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0
𝑑𝑑𝑑𝑑
0                                                 (14) 

For small contact angles, the solution of the differential equation (12) has the form: 

 

𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝑅𝑅𝑅𝑅
ℎ0

exp(−𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑
ℎ0

) �(1 + 𝜇𝜇𝜇𝜇2)∫ 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑
ℎ0

)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑
0 + (𝜒𝜒𝜒𝜒

2
+ 𝜇𝜇𝜇𝜇)∫ 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑

ℎ0
)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0 � .   (15) 

 

As can be seen from the solutions obtained, in order to calculate the stresses, it is necessary 
to describe the state of the deformable material. Let's take the equation of state according to the 
theory of hardening (4): 

 

𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝜅𝜅𝜅𝜅𝑛𝑛𝑛𝑛 , 

where:𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 − permanent materials; 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒- equivalent strain rate;  𝜅𝜅𝜅𝜅 = ∫ 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒dt𝑡𝑡𝑡𝑡
0 − the Udquist 

parameter. 

,                                                  (12)

where are the designations introduced:

 

Figure 2 - To the derivation of the equilibrium equation of the element 

It is obvious from Fig. 2 that ℎ = ℎ0 + 𝜔𝜔𝜔𝜔(1 − cos𝛼𝛼𝛼𝛼), dy = 𝜔𝜔𝜔𝜔cos𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼. Considering in equation 
(8) the relations (9), (10), (11), as well as the last equalities, after simple transformations, a 
differential equation is obtained: 

         𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝜓𝜓𝜓𝜓1(𝛼𝛼𝛼𝛼)𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼),                                                (12) 

where are the designations introduced: 

𝜓𝜓𝜓𝜓1(𝛼𝛼𝛼𝛼) = 1
ℎ0 𝑅𝑅𝑅𝑅⁄ +1−cos𝑑𝑑𝑑𝑑

(sin𝛼𝛼𝛼𝛼 + sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

)

𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 1
ℎ0 𝑅𝑅𝑅𝑅⁄ +1−cos𝑑𝑑𝑑𝑑

(sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

+ 𝜒𝜒𝜒𝜒
2

cos𝛼𝛼𝛼𝛼)𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒
                                (13) 

 
           Stress-strain state of the layer and power parameters of the technological process 
To integrate equation (12), we have the boundary condition: 𝛼𝛼𝛼𝛼 = 0,𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 0. Then the 

solution of the equation will be written as follows: 

     𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = exp(−∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑
0 )∫ 𝜓𝜓𝜓𝜓2exp(∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0
𝑑𝑑𝑑𝑑
0                                                 (14) 

For small contact angles, the solution of the differential equation (12) has the form: 

 

𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝑅𝑅𝑅𝑅
ℎ0

exp(−𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑
ℎ0

) �(1 + 𝜇𝜇𝜇𝜇2)∫ 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑
ℎ0

)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑
0 + (𝜒𝜒𝜒𝜒

2
+ 𝜇𝜇𝜇𝜇)∫ 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑

ℎ0
)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0 � .   (15) 

 

As can be seen from the solutions obtained, in order to calculate the stresses, it is necessary 
to describe the state of the deformable material. Let's take the equation of state according to the 
theory of hardening (4): 

 

𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝜅𝜅𝜅𝜅𝑛𝑛𝑛𝑛 , 

where:𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 − permanent materials; 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒- equivalent strain rate;  𝜅𝜅𝜅𝜅 = ∫ 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒dt𝑡𝑡𝑡𝑡
0 − the Udquist 

parameter. 

                                 (13)

Stress-strain state of the layer and power parameters of the technological process
To integrate equation (12), we have the boundary condition: 

 

Figure 2 - To the derivation of the equilibrium equation of the element 

It is obvious from Fig. 2 that ℎ = ℎ0 + 𝜔𝜔𝜔𝜔(1 − cos𝛼𝛼𝛼𝛼), dy = 𝜔𝜔𝜔𝜔cos𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼. Considering in equation 
(8) the relations (9), (10), (11), as well as the last equalities, after simple transformations, a 
differential equation is obtained: 

         𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝜓𝜓𝜓𝜓1(𝛼𝛼𝛼𝛼)𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼),                                                (12) 

where are the designations introduced: 

𝜓𝜓𝜓𝜓1(𝛼𝛼𝛼𝛼) = 1
ℎ0 𝑅𝑅𝑅𝑅⁄ +1−cos𝑑𝑑𝑑𝑑

(sin𝛼𝛼𝛼𝛼 + sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

)

𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 1
ℎ0 𝑅𝑅𝑅𝑅⁄ +1−cos𝑑𝑑𝑑𝑑

(sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

+ 𝜒𝜒𝜒𝜒
2

cos𝛼𝛼𝛼𝛼)𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒
                                (13) 

 
           Stress-strain state of the layer and power parameters of the technological process 
To integrate equation (12), we have the boundary condition: 𝛼𝛼𝛼𝛼 = 0,𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 0. Then the 

solution of the equation will be written as follows: 

     𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = exp(−∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑
0 )∫ 𝜓𝜓𝜓𝜓2exp(∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0
𝑑𝑑𝑑𝑑
0                                                 (14) 

For small contact angles, the solution of the differential equation (12) has the form: 

 

𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝑅𝑅𝑅𝑅
ℎ0

exp(−𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑
ℎ0

) �(1 + 𝜇𝜇𝜇𝜇2)∫ 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑
ℎ0

)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑
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For small contact angles, the solution of the differential equation (12) has the form: 

 

𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝑅𝑅𝑅𝑅
ℎ0

exp(−𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑
ℎ0

) �(1 + 𝜇𝜇𝜇𝜇2)∫ 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑
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2
+ 𝜇𝜇𝜇𝜇)∫ 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑

ℎ0
)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0 � .   (15) 

 

As can be seen from the solutions obtained, in order to calculate the stresses, it is necessary 
to describe the state of the deformable material. Let's take the equation of state according to the 
theory of hardening (4): 

 

𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝜅𝜅𝜅𝜅𝑛𝑛𝑛𝑛 , 

where:𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 − permanent materials; 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒- equivalent strain rate;  𝜅𝜅𝜅𝜅 = ∫ 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒dt𝑡𝑡𝑡𝑡
0 − the Udquist 

parameter. 
 -  permanent materials; 

 

Figure 2 - To the derivation of the equilibrium equation of the element 

It is obvious from Fig. 2 that ℎ = ℎ0 + 𝜔𝜔𝜔𝜔(1 − cos𝛼𝛼𝛼𝛼), dy = 𝜔𝜔𝜔𝜔cos𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼. Considering in equation 
(8) the relations (9), (10), (11), as well as the last equalities, after simple transformations, a 
differential equation is obtained: 

         𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝜓𝜓𝜓𝜓1(𝛼𝛼𝛼𝛼)𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼),                                                (12) 

where are the designations introduced: 

𝜓𝜓𝜓𝜓1(𝛼𝛼𝛼𝛼) = 1
ℎ0 𝑅𝑅𝑅𝑅⁄ +1−cos𝑑𝑑𝑑𝑑

(sin𝛼𝛼𝛼𝛼 + sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

)

𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 1
ℎ0 𝑅𝑅𝑅𝑅⁄ +1−cos𝑑𝑑𝑑𝑑

(sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

+ 𝜒𝜒𝜒𝜒
2

cos𝛼𝛼𝛼𝛼)𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒
                                (13) 

 
           Stress-strain state of the layer and power parameters of the technological process 
To integrate equation (12), we have the boundary condition: 𝛼𝛼𝛼𝛼 = 0,𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 0. Then the 

solution of the equation will be written as follows: 

     𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = exp(−∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑
0 )∫ 𝜓𝜓𝜓𝜓2exp(∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0
𝑑𝑑𝑑𝑑
0                                                 (14) 

For small contact angles, the solution of the differential equation (12) has the form: 

 

𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝑅𝑅𝑅𝑅
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+ 𝜇𝜇𝜇𝜇)∫ 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑

ℎ0
)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑
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As can be seen from the solutions obtained, in order to calculate the stresses, it is necessary 
to describe the state of the deformable material. Let's take the equation of state according to the 
theory of hardening (4): 

 

𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝜅𝜅𝜅𝜅𝑛𝑛𝑛𝑛 , 

where:𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 − permanent materials; 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒- equivalent strain rate;  𝜅𝜅𝜅𝜅 = ∫ 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒dt𝑡𝑡𝑡𝑡
0 − the Udquist 

parameter. 
 - equivalent strain rate;  

 

Figure 2 - To the derivation of the equilibrium equation of the element 

It is obvious from Fig. 2 that ℎ = ℎ0 + 𝜔𝜔𝜔𝜔(1 − cos𝛼𝛼𝛼𝛼), dy = 𝜔𝜔𝜔𝜔cos𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼. Considering in equation 
(8) the relations (9), (10), (11), as well as the last equalities, after simple transformations, a 
differential equation is obtained: 

         𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝜓𝜓𝜓𝜓1(𝛼𝛼𝛼𝛼)𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼),                                                (12) 

where are the designations introduced: 

𝜓𝜓𝜓𝜓1(𝛼𝛼𝛼𝛼) = 1
ℎ0 𝑅𝑅𝑅𝑅⁄ +1−cos𝑑𝑑𝑑𝑑

(sin𝛼𝛼𝛼𝛼 + sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

)

𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 1
ℎ0 𝑅𝑅𝑅𝑅⁄ +1−cos𝑑𝑑𝑑𝑑

(sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑
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cos𝛼𝛼𝛼𝛼)𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒
                                (13) 

 
           Stress-strain state of the layer and power parameters of the technological process 
To integrate equation (12), we have the boundary condition: 𝛼𝛼𝛼𝛼 = 0,𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 0. Then the 

solution of the equation will be written as follows: 

     𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = exp(−∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑
0 )∫ 𝜓𝜓𝜓𝜓2exp(∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑
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𝑑𝑑𝑑𝑑
0                                                 (14) 

For small contact angles, the solution of the differential equation (12) has the form: 

 

𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝑅𝑅𝑅𝑅
ℎ0

exp(−𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑
ℎ0

) �(1 + 𝜇𝜇𝜇𝜇2)∫ 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(𝜇𝜇𝜇𝜇𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑
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ℎ0
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0 � .   (15) 

 

As can be seen from the solutions obtained, in order to calculate the stresses, it is necessary 
to describe the state of the deformable material. Let's take the equation of state according to the 
theory of hardening (4): 

 

𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝜅𝜅𝜅𝜅𝑛𝑛𝑛𝑛 , 

where:𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 − permanent materials; 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒- equivalent strain rate;  𝜅𝜅𝜅𝜅 = ∫ 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒dt𝑡𝑡𝑡𝑡
0 − the Udquist 

parameter. 
 

-  the Udquist parameter.
The rate of deformation in the longitudinal direction, taking into account the 

ratios (7), is calculated as:The rate of deformation in the longitudinal direction, taking into account the ratios (7), is 
calculated as: 

                                         𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
dy

= 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔sin𝛼𝛼𝛼𝛼 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
dy

                                            (16)   

 

In the considered case of a plane deformed state, the equivalent rate of deformations 
(Вulekbayeva, et al, 2024; Pham, et al, 2024) 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦/√3. If we take into account that (Fig.2) 
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/dy = dl/(Rdy) = 1/(𝜔𝜔𝜔𝜔cos𝛼𝛼𝛼𝛼), then for the strain rate and the equivalent strain rate we have: 

                          𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝜔𝜔𝜔𝜔tg𝛼𝛼𝛼𝛼, 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2𝜔𝜔𝜔𝜔tg𝛼𝛼𝛼𝛼/√3                                              (17) 

Then the Udquist parameter, taking into account the second equality (17) and the ratio dt =
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/𝜔𝜔𝜔𝜔., will take the form: 

                                             𝜅𝜅𝜅𝜅 = − 2
√3

ln|cos𝛼𝛼𝛼𝛼|                                                             (18) 

If we take into account the formulas for the equivalent strain and the Udquist parameter in 
the equation of state (16), then to calculate the equivalent stress we obtain: 

                                         𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎( 2
√3

)𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚tg𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼(−ln|cos𝛼𝛼𝛼𝛼|)𝑛𝑛𝑛𝑛                                       (19) 

From formula (9), taking into account (10) and (19), we determine the pressure distribution 
on the contact surface of the material with the roller: 

                                                  𝑝𝑝𝑝𝑝 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦−𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

                                                             (20) 

Taking into account the first equation (17),  the deformation in the longitudinal direction is 
equal to: 

                                 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 = ∫ 𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦dt𝑡𝑡𝑡𝑡
0 + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 = −ln|cos𝛼𝛼𝛼𝛼| + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0,                                               (21) 

where:𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 − residual deformation after surfacing. 
In order to completely eliminate the residual longitudinal deformations, it is necessary to 

fulfill the condition ln|cos𝛼𝛼𝛼𝛼| = 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0. Appropriate contact angle: 
  

                                    𝛼𝛼𝛼𝛼0 = arccos[exp(𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0)]                                                          (22) 

On the other hand, the maximum contact angle (Fig. 1): 

                                        𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥ℎ (2𝜔𝜔𝜔𝜔)⁄ � .                                                     (23) 

where: 𝛥𝛥𝛥𝛥ℎ − reducing the thickness of the deposited layer. 
Comparing expressions (22) and (23) we find: 
 

                                        𝛥𝛥𝛥𝛥ℎ = 𝜔𝜔𝜔𝜔[1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄                                                   (24) 

If the magnitude of the residual longitudinal welding deformation is known, then formulas 
(22) and (24) determine the maximum contact angle of the material with the roller and the 
deformation 𝜀𝜀𝜀𝜀𝑧𝑧𝑧𝑧 = 𝛥𝛥𝛥𝛥ℎ ℎ⁄  by the thickness of the element in the rolling zone of the seam 
(Вulekbayeva, et al, 2024). 

After determining the contact pressure and the intensity of the friction forces, the force and 
moment acting on the roller can be calculated. 

                                            (16)  

In the considered case of a plane deformed state, the equivalent rate of 
deformations (Вulekbayeva, et al, 2024; Pham, et al, 2024) 

The rate of deformation in the longitudinal direction, taking into account the ratios (7), is 
calculated as: 

                                         𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
dy
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                                            (16)   

 

In the considered case of a plane deformed state, the equivalent rate of deformations 
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Then the Udquist parameter, taking into account the second equality (17) and the ratio dt =
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/𝜔𝜔𝜔𝜔., will take the form: 

                                             𝜅𝜅𝜅𝜅 = − 2
√3

ln|cos𝛼𝛼𝛼𝛼|                                                             (18) 

If we take into account the formulas for the equivalent strain and the Udquist parameter in 
the equation of state (16), then to calculate the equivalent stress we obtain: 

                                         𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎( 2
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From formula (9), taking into account (10) and (19), we determine the pressure distribution 
on the contact surface of the material with the roller: 

                                                  𝑝𝑝𝑝𝑝 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦−𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

                                                             (20) 

Taking into account the first equation (17),  the deformation in the longitudinal direction is 
equal to: 

                                 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 = ∫ 𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦dt𝑡𝑡𝑡𝑡
0 + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 = −ln|cos𝛼𝛼𝛼𝛼| + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0,                                               (21) 

where:𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 − residual deformation after surfacing. 
In order to completely eliminate the residual longitudinal deformations, it is necessary to 

fulfill the condition ln|cos𝛼𝛼𝛼𝛼| = 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0. Appropriate contact angle: 
  

                                    𝛼𝛼𝛼𝛼0 = arccos[exp(𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0)]                                                          (22) 

On the other hand, the maximum contact angle (Fig. 1): 

                                        𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥ℎ (2𝜔𝜔𝜔𝜔)⁄ � .                                                     (23) 

where: 𝛥𝛥𝛥𝛥ℎ − reducing the thickness of the deposited layer. 
Comparing expressions (22) and (23) we find: 
 

                                        𝛥𝛥𝛥𝛥ℎ = 𝜔𝜔𝜔𝜔[1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄                                                   (24) 

If the magnitude of the residual longitudinal welding deformation is known, then formulas 
(22) and (24) determine the maximum contact angle of the material with the roller and the 
deformation 𝜀𝜀𝜀𝜀𝑧𝑧𝑧𝑧 = 𝛥𝛥𝛥𝛥ℎ ℎ⁄  by the thickness of the element in the rolling zone of the seam 
(Вulekbayeva, et al, 2024). 

After determining the contact pressure and the intensity of the friction forces, the force and 
moment acting on the roller can be calculated. 

. If we 
take into account that (Fig.2) 

The rate of deformation in the longitudinal direction, taking into account the ratios (7), is 
calculated as: 

                                         𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
dy

= 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔sin𝛼𝛼𝛼𝛼 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
dy

                                            (16)   

 

In the considered case of a plane deformed state, the equivalent rate of deformations 
(Вulekbayeva, et al, 2024; Pham, et al, 2024) 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦/√3. If we take into account that (Fig.2) 
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/dy = dl/(Rdy) = 1/(𝜔𝜔𝜔𝜔cos𝛼𝛼𝛼𝛼), then for the strain rate and the equivalent strain rate we have: 

                          𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝜔𝜔𝜔𝜔tg𝛼𝛼𝛼𝛼, 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2𝜔𝜔𝜔𝜔tg𝛼𝛼𝛼𝛼/√3                                              (17) 

Then the Udquist parameter, taking into account the second equality (17) and the ratio dt =
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/𝜔𝜔𝜔𝜔., will take the form: 

                                             𝜅𝜅𝜅𝜅 = − 2
√3

ln|cos𝛼𝛼𝛼𝛼|                                                             (18) 

If we take into account the formulas for the equivalent strain and the Udquist parameter in 
the equation of state (16), then to calculate the equivalent stress we obtain: 

                                         𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎( 2
√3

)𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚tg𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼(−ln|cos𝛼𝛼𝛼𝛼|)𝑛𝑛𝑛𝑛                                       (19) 

From formula (9), taking into account (10) and (19), we determine the pressure distribution 
on the contact surface of the material with the roller: 

                                                  𝑝𝑝𝑝𝑝 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦−𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

                                                             (20) 

Taking into account the first equation (17),  the deformation in the longitudinal direction is 
equal to: 

                                 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 = ∫ 𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦dt𝑡𝑡𝑡𝑡
0 + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 = −ln|cos𝛼𝛼𝛼𝛼| + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0,                                               (21) 

where:𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 − residual deformation after surfacing. 
In order to completely eliminate the residual longitudinal deformations, it is necessary to 

fulfill the condition ln|cos𝛼𝛼𝛼𝛼| = 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0. Appropriate contact angle: 
  

                                    𝛼𝛼𝛼𝛼0 = arccos[exp(𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0)]                                                          (22) 

On the other hand, the maximum contact angle (Fig. 1): 

                                        𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥ℎ (2𝜔𝜔𝜔𝜔)⁄ � .                                                     (23) 

where: 𝛥𝛥𝛥𝛥ℎ − reducing the thickness of the deposited layer. 
Comparing expressions (22) and (23) we find: 
 

                                        𝛥𝛥𝛥𝛥ℎ = 𝜔𝜔𝜔𝜔[1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄                                                   (24) 

If the magnitude of the residual longitudinal welding deformation is known, then formulas 
(22) and (24) determine the maximum contact angle of the material with the roller and the 
deformation 𝜀𝜀𝜀𝜀𝑧𝑧𝑧𝑧 = 𝛥𝛥𝛥𝛥ℎ ℎ⁄  by the thickness of the element in the rolling zone of the seam 
(Вulekbayeva, et al, 2024). 

After determining the contact pressure and the intensity of the friction forces, the force and 
moment acting on the roller can be calculated. 

, then for the strain 
rate and the equivalent strain rate we have:

The rate of deformation in the longitudinal direction, taking into account the ratios (7), is 
calculated as: 
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dy
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In the considered case of a plane deformed state, the equivalent rate of deformations 
(Вulekbayeva, et al, 2024; Pham, et al, 2024) 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦/√3. If we take into account that (Fig.2) 
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/dy = dl/(Rdy) = 1/(𝜔𝜔𝜔𝜔cos𝛼𝛼𝛼𝛼), then for the strain rate and the equivalent strain rate we have: 

                          𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝜔𝜔𝜔𝜔tg𝛼𝛼𝛼𝛼, 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2𝜔𝜔𝜔𝜔tg𝛼𝛼𝛼𝛼/√3                                              (17) 

Then the Udquist parameter, taking into account the second equality (17) and the ratio dt =
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/𝜔𝜔𝜔𝜔., will take the form: 

                                             𝜅𝜅𝜅𝜅 = − 2
√3

ln|cos𝛼𝛼𝛼𝛼|                                                             (18) 

If we take into account the formulas for the equivalent strain and the Udquist parameter in 
the equation of state (16), then to calculate the equivalent stress we obtain: 

                                         𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎( 2
√3

)𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚tg𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼(−ln|cos𝛼𝛼𝛼𝛼|)𝑛𝑛𝑛𝑛                                       (19) 

From formula (9), taking into account (10) and (19), we determine the pressure distribution 
on the contact surface of the material with the roller: 

                                                  𝑝𝑝𝑝𝑝 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦−𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

                                                             (20) 

Taking into account the first equation (17),  the deformation in the longitudinal direction is 
equal to: 

                                 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 = ∫ 𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦dt𝑡𝑡𝑡𝑡
0 + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 = −ln|cos𝛼𝛼𝛼𝛼| + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0,                                               (21) 

where:𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 − residual deformation after surfacing. 
In order to completely eliminate the residual longitudinal deformations, it is necessary to 

fulfill the condition ln|cos𝛼𝛼𝛼𝛼| = 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0. Appropriate contact angle: 
  

                                    𝛼𝛼𝛼𝛼0 = arccos[exp(𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0)]                                                          (22) 

On the other hand, the maximum contact angle (Fig. 1): 

                                        𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥ℎ (2𝜔𝜔𝜔𝜔)⁄ � .                                                     (23) 

where: 𝛥𝛥𝛥𝛥ℎ − reducing the thickness of the deposited layer. 
Comparing expressions (22) and (23) we find: 
 

                                        𝛥𝛥𝛥𝛥ℎ = 𝜔𝜔𝜔𝜔[1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄                                                   (24) 

If the magnitude of the residual longitudinal welding deformation is known, then formulas 
(22) and (24) determine the maximum contact angle of the material with the roller and the 
deformation 𝜀𝜀𝜀𝜀𝑧𝑧𝑧𝑧 = 𝛥𝛥𝛥𝛥ℎ ℎ⁄  by the thickness of the element in the rolling zone of the seam 
(Вulekbayeva, et al, 2024). 

After determining the contact pressure and the intensity of the friction forces, the force and 
moment acting on the roller can be calculated. 

                                              (17)
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Then the Udquist parameter, taking into account the second equality (17) and 
the ratio 

The rate of deformation in the longitudinal direction, taking into account the ratios (7), is 
calculated as: 

                                         𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
dy

= 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔sin𝛼𝛼𝛼𝛼 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
dy

                                            (16)   

 

In the considered case of a plane deformed state, the equivalent rate of deformations 
(Вulekbayeva, et al, 2024; Pham, et al, 2024) 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦/√3. If we take into account that (Fig.2) 
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/dy = dl/(Rdy) = 1/(𝜔𝜔𝜔𝜔cos𝛼𝛼𝛼𝛼), then for the strain rate and the equivalent strain rate we have: 

                          𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝜔𝜔𝜔𝜔tg𝛼𝛼𝛼𝛼, 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2𝜔𝜔𝜔𝜔tg𝛼𝛼𝛼𝛼/√3                                              (17) 

Then the Udquist parameter, taking into account the second equality (17) and the ratio dt =
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/𝜔𝜔𝜔𝜔., will take the form: 

                                             𝜅𝜅𝜅𝜅 = − 2
√3

ln|cos𝛼𝛼𝛼𝛼|                                                             (18) 

If we take into account the formulas for the equivalent strain and the Udquist parameter in 
the equation of state (16), then to calculate the equivalent stress we obtain: 

                                         𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎( 2
√3

)𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚tg𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼(−ln|cos𝛼𝛼𝛼𝛼|)𝑛𝑛𝑛𝑛                                       (19) 

From formula (9), taking into account (10) and (19), we determine the pressure distribution 
on the contact surface of the material with the roller: 

                                                  𝑝𝑝𝑝𝑝 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦−𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

                                                             (20) 

Taking into account the first equation (17),  the deformation in the longitudinal direction is 
equal to: 

                                 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 = ∫ 𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦dt𝑡𝑡𝑡𝑡
0 + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 = −ln|cos𝛼𝛼𝛼𝛼| + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0,                                               (21) 

where:𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 − residual deformation after surfacing. 
In order to completely eliminate the residual longitudinal deformations, it is necessary to 

fulfill the condition ln|cos𝛼𝛼𝛼𝛼| = 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0. Appropriate contact angle: 
  

                                    𝛼𝛼𝛼𝛼0 = arccos[exp(𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0)]                                                          (22) 

On the other hand, the maximum contact angle (Fig. 1): 

                                        𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥ℎ (2𝜔𝜔𝜔𝜔)⁄ � .                                                     (23) 

where: 𝛥𝛥𝛥𝛥ℎ − reducing the thickness of the deposited layer. 
Comparing expressions (22) and (23) we find: 
 

                                        𝛥𝛥𝛥𝛥ℎ = 𝜔𝜔𝜔𝜔[1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄                                                   (24) 

If the magnitude of the residual longitudinal welding deformation is known, then formulas 
(22) and (24) determine the maximum contact angle of the material with the roller and the 
deformation 𝜀𝜀𝜀𝜀𝑧𝑧𝑧𝑧 = 𝛥𝛥𝛥𝛥ℎ ℎ⁄  by the thickness of the element in the rolling zone of the seam 
(Вulekbayeva, et al, 2024). 

After determining the contact pressure and the intensity of the friction forces, the force and 
moment acting on the roller can be calculated. 

The rate of deformation in the longitudinal direction, taking into account the ratios (7), is 
calculated as: 
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dy
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In the considered case of a plane deformed state, the equivalent rate of deformations 
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)𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚tg𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼(−ln|cos𝛼𝛼𝛼𝛼|)𝑛𝑛𝑛𝑛                                       (19) 

From formula (9), taking into account (10) and (19), we determine the pressure distribution 
on the contact surface of the material with the roller: 

                                                  𝑝𝑝𝑝𝑝 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦−𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑
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Taking into account the first equation (17),  the deformation in the longitudinal direction is 
equal to: 

                                 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 = ∫ 𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦dt𝑡𝑡𝑡𝑡
0 + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 = −ln|cos𝛼𝛼𝛼𝛼| + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0,                                               (21) 
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fulfill the condition ln|cos𝛼𝛼𝛼𝛼| = 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0. Appropriate contact angle: 
  

                                    𝛼𝛼𝛼𝛼0 = arccos[exp(𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0)]                                                          (22) 

On the other hand, the maximum contact angle (Fig. 1): 

                                        𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥ℎ (2𝜔𝜔𝜔𝜔)⁄ � .                                                     (23) 

where: 𝛥𝛥𝛥𝛥ℎ − reducing the thickness of the deposited layer. 
Comparing expressions (22) and (23) we find: 
 

                                        𝛥𝛥𝛥𝛥ℎ = 𝜔𝜔𝜔𝜔[1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄                                                   (24) 

If the magnitude of the residual longitudinal welding deformation is known, then formulas 
(22) and (24) determine the maximum contact angle of the material with the roller and the 
deformation 𝜀𝜀𝜀𝜀𝑧𝑧𝑧𝑧 = 𝛥𝛥𝛥𝛥ℎ ℎ⁄  by the thickness of the element in the rolling zone of the seam 
(Вulekbayeva, et al, 2024). 

After determining the contact pressure and the intensity of the friction forces, the force and 
moment acting on the roller can be calculated. 
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fulfill the condition ln|cos𝛼𝛼𝛼𝛼| = 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0. Appropriate contact angle: 
  

                                    𝛼𝛼𝛼𝛼0 = arccos[exp(𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0)]                                                          (22) 

On the other hand, the maximum contact angle (Fig. 1): 

                                        𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥ℎ (2𝜔𝜔𝜔𝜔)⁄ � .                                                     (23) 

where: 𝛥𝛥𝛥𝛥ℎ − reducing the thickness of the deposited layer. 
Comparing expressions (22) and (23) we find: 
 

                                        𝛥𝛥𝛥𝛥ℎ = 𝜔𝜔𝜔𝜔[1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄                                                   (24) 

If the magnitude of the residual longitudinal welding deformation is known, then formulas 
(22) and (24) determine the maximum contact angle of the material with the roller and the 
deformation 𝜀𝜀𝜀𝜀𝑧𝑧𝑧𝑧 = 𝛥𝛥𝛥𝛥ℎ ℎ⁄  by the thickness of the element in the rolling zone of the seam 
(Вulekbayeva, et al, 2024). 

After determining the contact pressure and the intensity of the friction forces, the force and 
moment acting on the roller can be calculated. 

,                                                (21)

where: 

The rate of deformation in the longitudinal direction, taking into account the ratios (7), is 
calculated as: 

                                         𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
dy

= 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔sin𝛼𝛼𝛼𝛼 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
dy

                                            (16)   

 

In the considered case of a plane deformed state, the equivalent rate of deformations 
(Вulekbayeva, et al, 2024; Pham, et al, 2024) 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦/√3. If we take into account that (Fig.2) 
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/dy = dl/(Rdy) = 1/(𝜔𝜔𝜔𝜔cos𝛼𝛼𝛼𝛼), then for the strain rate and the equivalent strain rate we have: 

                          𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝜔𝜔𝜔𝜔tg𝛼𝛼𝛼𝛼, 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2𝜔𝜔𝜔𝜔tg𝛼𝛼𝛼𝛼/√3                                              (17) 

Then the Udquist parameter, taking into account the second equality (17) and the ratio dt =
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/𝜔𝜔𝜔𝜔., will take the form: 

                                             𝜅𝜅𝜅𝜅 = − 2
√3

ln|cos𝛼𝛼𝛼𝛼|                                                             (18) 

If we take into account the formulas for the equivalent strain and the Udquist parameter in 
the equation of state (16), then to calculate the equivalent stress we obtain: 

                                         𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎( 2
√3

)𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚tg𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼(−ln|cos𝛼𝛼𝛼𝛼|)𝑛𝑛𝑛𝑛                                       (19) 

From formula (9), taking into account (10) and (19), we determine the pressure distribution 
on the contact surface of the material with the roller: 

                                                  𝑝𝑝𝑝𝑝 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦−𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

                                                             (20) 

Taking into account the first equation (17),  the deformation in the longitudinal direction is 
equal to: 

                                 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 = ∫ 𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦dt𝑡𝑡𝑡𝑡
0 + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 = −ln|cos𝛼𝛼𝛼𝛼| + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0,                                               (21) 

where:𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 − residual deformation after surfacing. 
In order to completely eliminate the residual longitudinal deformations, it is necessary to 

fulfill the condition ln|cos𝛼𝛼𝛼𝛼| = 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0. Appropriate contact angle: 
  

                                    𝛼𝛼𝛼𝛼0 = arccos[exp(𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0)]                                                          (22) 

On the other hand, the maximum contact angle (Fig. 1): 

                                        𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥ℎ (2𝜔𝜔𝜔𝜔)⁄ � .                                                     (23) 

where: 𝛥𝛥𝛥𝛥ℎ − reducing the thickness of the deposited layer. 
Comparing expressions (22) and (23) we find: 
 

                                        𝛥𝛥𝛥𝛥ℎ = 𝜔𝜔𝜔𝜔[1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄                                                   (24) 

If the magnitude of the residual longitudinal welding deformation is known, then formulas 
(22) and (24) determine the maximum contact angle of the material with the roller and the 
deformation 𝜀𝜀𝜀𝜀𝑧𝑧𝑧𝑧 = 𝛥𝛥𝛥𝛥ℎ ℎ⁄  by the thickness of the element in the rolling zone of the seam 
(Вulekbayeva, et al, 2024). 

After determining the contact pressure and the intensity of the friction forces, the force and 
moment acting on the roller can be calculated. 

 – residual deformation after surfacing.
In order to completely eliminate the residual longitudinal deformations, it is 

necessary to fulfill the condition 

The rate of deformation in the longitudinal direction, taking into account the ratios (7), is 
calculated as: 

                                         𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
dy

= 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔sin𝛼𝛼𝛼𝛼 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
dy

                                            (16)   

 

In the considered case of a plane deformed state, the equivalent rate of deformations 
(Вulekbayeva, et al, 2024; Pham, et al, 2024) 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦/√3. If we take into account that (Fig.2) 
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/dy = dl/(Rdy) = 1/(𝜔𝜔𝜔𝜔cos𝛼𝛼𝛼𝛼), then for the strain rate and the equivalent strain rate we have: 

                          𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝜔𝜔𝜔𝜔tg𝛼𝛼𝛼𝛼, 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2𝜔𝜔𝜔𝜔tg𝛼𝛼𝛼𝛼/√3                                              (17) 

Then the Udquist parameter, taking into account the second equality (17) and the ratio dt =
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/𝜔𝜔𝜔𝜔., will take the form: 

                                             𝜅𝜅𝜅𝜅 = − 2
√3

ln|cos𝛼𝛼𝛼𝛼|                                                             (18) 

If we take into account the formulas for the equivalent strain and the Udquist parameter in 
the equation of state (16), then to calculate the equivalent stress we obtain: 

                                         𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎( 2
√3

)𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚tg𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼(−ln|cos𝛼𝛼𝛼𝛼|)𝑛𝑛𝑛𝑛                                       (19) 

From formula (9), taking into account (10) and (19), we determine the pressure distribution 
on the contact surface of the material with the roller: 

                                                  𝑝𝑝𝑝𝑝 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦−𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

                                                             (20) 

Taking into account the first equation (17),  the deformation in the longitudinal direction is 
equal to: 

                                 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 = ∫ 𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦dt𝑡𝑡𝑡𝑡
0 + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 = −ln|cos𝛼𝛼𝛼𝛼| + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0,                                               (21) 

where:𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 − residual deformation after surfacing. 
In order to completely eliminate the residual longitudinal deformations, it is necessary to 

fulfill the condition ln|cos𝛼𝛼𝛼𝛼| = 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0. Appropriate contact angle: 
  

                                    𝛼𝛼𝛼𝛼0 = arccos[exp(𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0)]                                                          (22) 

On the other hand, the maximum contact angle (Fig. 1): 

                                        𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥ℎ (2𝜔𝜔𝜔𝜔)⁄ � .                                                     (23) 

where: 𝛥𝛥𝛥𝛥ℎ − reducing the thickness of the deposited layer. 
Comparing expressions (22) and (23) we find: 
 

                                        𝛥𝛥𝛥𝛥ℎ = 𝜔𝜔𝜔𝜔[1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄                                                   (24) 

If the magnitude of the residual longitudinal welding deformation is known, then formulas 
(22) and (24) determine the maximum contact angle of the material with the roller and the 
deformation 𝜀𝜀𝜀𝜀𝑧𝑧𝑧𝑧 = 𝛥𝛥𝛥𝛥ℎ ℎ⁄  by the thickness of the element in the rolling zone of the seam 
(Вulekbayeva, et al, 2024). 

After determining the contact pressure and the intensity of the friction forces, the force and 
moment acting on the roller can be calculated. 

. Appropriate contact angle:
 

The rate of deformation in the longitudinal direction, taking into account the ratios (7), is 
calculated as: 

                                         𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
dy

= 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔sin𝛼𝛼𝛼𝛼 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
dy

                                            (16)   

 

In the considered case of a plane deformed state, the equivalent rate of deformations 
(Вulekbayeva, et al, 2024; Pham, et al, 2024) 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦/√3. If we take into account that (Fig.2) 
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/dy = dl/(Rdy) = 1/(𝜔𝜔𝜔𝜔cos𝛼𝛼𝛼𝛼), then for the strain rate and the equivalent strain rate we have: 

                          𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝜔𝜔𝜔𝜔tg𝛼𝛼𝛼𝛼, 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2𝜔𝜔𝜔𝜔tg𝛼𝛼𝛼𝛼/√3                                              (17) 

Then the Udquist parameter, taking into account the second equality (17) and the ratio dt =
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/𝜔𝜔𝜔𝜔., will take the form: 

                                             𝜅𝜅𝜅𝜅 = − 2
√3

ln|cos𝛼𝛼𝛼𝛼|                                                             (18) 

If we take into account the formulas for the equivalent strain and the Udquist parameter in 
the equation of state (16), then to calculate the equivalent stress we obtain: 

                                         𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎( 2
√3

)𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚tg𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼(−ln|cos𝛼𝛼𝛼𝛼|)𝑛𝑛𝑛𝑛                                       (19) 

From formula (9), taking into account (10) and (19), we determine the pressure distribution 
on the contact surface of the material with the roller: 

                                                  𝑝𝑝𝑝𝑝 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦−𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

                                                             (20) 

Taking into account the first equation (17),  the deformation in the longitudinal direction is 
equal to: 

                                 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 = ∫ 𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦dt𝑡𝑡𝑡𝑡
0 + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 = −ln|cos𝛼𝛼𝛼𝛼| + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0,                                               (21) 

where:𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 − residual deformation after surfacing. 
In order to completely eliminate the residual longitudinal deformations, it is necessary to 

fulfill the condition ln|cos𝛼𝛼𝛼𝛼| = 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0. Appropriate contact angle: 
  

                                    𝛼𝛼𝛼𝛼0 = arccos[exp(𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0)]                                                          (22) 

On the other hand, the maximum contact angle (Fig. 1): 

                                        𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥ℎ (2𝜔𝜔𝜔𝜔)⁄ � .                                                     (23) 

where: 𝛥𝛥𝛥𝛥ℎ − reducing the thickness of the deposited layer. 
Comparing expressions (22) and (23) we find: 
 

                                        𝛥𝛥𝛥𝛥ℎ = 𝜔𝜔𝜔𝜔[1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄                                                   (24) 

If the magnitude of the residual longitudinal welding deformation is known, then formulas 
(22) and (24) determine the maximum contact angle of the material with the roller and the 
deformation 𝜀𝜀𝜀𝜀𝑧𝑧𝑧𝑧 = 𝛥𝛥𝛥𝛥ℎ ℎ⁄  by the thickness of the element in the rolling zone of the seam 
(Вulekbayeva, et al, 2024). 

After determining the contact pressure and the intensity of the friction forces, the force and 
moment acting on the roller can be calculated. 

                                                            (22)

On the other hand, the maximum contact angle (Fig. 1):

The rate of deformation in the longitudinal direction, taking into account the ratios (7), is 
calculated as: 

                                         𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
dy

= 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔sin𝛼𝛼𝛼𝛼 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
dy

                                            (16)   

 

In the considered case of a plane deformed state, the equivalent rate of deformations 
(Вulekbayeva, et al, 2024; Pham, et al, 2024) 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦/√3. If we take into account that (Fig.2) 
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/dy = dl/(Rdy) = 1/(𝜔𝜔𝜔𝜔cos𝛼𝛼𝛼𝛼), then for the strain rate and the equivalent strain rate we have: 

                          𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝜔𝜔𝜔𝜔tg𝛼𝛼𝛼𝛼, 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2𝜔𝜔𝜔𝜔tg𝛼𝛼𝛼𝛼/√3                                              (17) 

Then the Udquist parameter, taking into account the second equality (17) and the ratio dt =
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼/𝜔𝜔𝜔𝜔., will take the form: 

                                             𝜅𝜅𝜅𝜅 = − 2
√3

ln|cos𝛼𝛼𝛼𝛼|                                                             (18) 

If we take into account the formulas for the equivalent strain and the Udquist parameter in 
the equation of state (16), then to calculate the equivalent stress we obtain: 

                                         𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎( 2
√3

)𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚tg𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼(−ln|cos𝛼𝛼𝛼𝛼|)𝑛𝑛𝑛𝑛                                       (19) 

From formula (9), taking into account (10) and (19), we determine the pressure distribution 
on the contact surface of the material with the roller: 

                                                  𝑝𝑝𝑝𝑝 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦−𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

                                                             (20) 

Taking into account the first equation (17),  the deformation in the longitudinal direction is 
equal to: 

                                 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦 = ∫ 𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦dt𝑡𝑡𝑡𝑡
0 + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 = −ln|cos𝛼𝛼𝛼𝛼| + 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0,                                               (21) 

where:𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 − residual deformation after surfacing. 
In order to completely eliminate the residual longitudinal deformations, it is necessary to 

fulfill the condition ln|cos𝛼𝛼𝛼𝛼| = 𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0. Appropriate contact angle: 
  

                                    𝛼𝛼𝛼𝛼0 = arccos[exp(𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0)]                                                          (22) 

On the other hand, the maximum contact angle (Fig. 1): 

                                        𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥ℎ (2𝜔𝜔𝜔𝜔)⁄ � .                                                     (23) 

where: 𝛥𝛥𝛥𝛥ℎ − reducing the thickness of the deposited layer. 
Comparing expressions (22) and (23) we find: 
 

                                        𝛥𝛥𝛥𝛥ℎ = 𝜔𝜔𝜔𝜔[1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄                                                   (24) 

If the magnitude of the residual longitudinal welding deformation is known, then formulas 
(22) and (24) determine the maximum contact angle of the material with the roller and the 
deformation 𝜀𝜀𝜀𝜀𝑧𝑧𝑧𝑧 = 𝛥𝛥𝛥𝛥ℎ ℎ⁄  by the thickness of the element in the rolling zone of the seam 
(Вulekbayeva, et al, 2024). 

After determining the contact pressure and the intensity of the friction forces, the force and 
moment acting on the roller can be calculated. 
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The rate of deformation in the longitudinal direction, taking into account the ratios (7), is 
calculated as: 

                                         𝜉𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦
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= 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔sin𝛼𝛼𝛼𝛼 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
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                                            (16)   

 

In the considered case of a plane deformed state, the equivalent rate of deformations 
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√3

ln|cos𝛼𝛼𝛼𝛼|                                                             (18) 
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                                                             (20) 
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where:𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0 − residual deformation after surfacing. 
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After determining the contact pressure and the intensity of the friction forces, 
the force and moment acting on the roller can be calculated.

The moment of forces per unit length in the direction perpendicular to the 
drawing, assuming that the moment of contact pressure forces relative to the center 
of the roller can be neglected, is equal to:

The moment of forces per unit length in the direction perpendicular to the drawing, 
assuming that the moment of contact pressure forces relative to the center of the roller can be 
neglected, is equal to: 

                                             𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇𝜔𝜔𝜔𝜔2 ∫ pd𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                                 (25) 

Projection on the vertical axis of the force per unit length in the direction perpendicular to 
the drawing: 

                                       𝑃𝑃𝑃𝑃𝑧𝑧𝑧𝑧 = 𝜔𝜔𝜔𝜔 ∫ (𝑝𝑝𝑝𝑝cos𝛼𝛼𝛼𝛼 − 𝑞𝑞𝑞𝑞sin𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                    (26) 

Projection on the horizontal axis of the force per unit length in the direction perpendicular 
to the drawing: 

                                      𝑃𝑃𝑃𝑃𝑦𝑦𝑦𝑦 = 𝜔𝜔𝜔𝜔 ∫ (𝑝𝑝𝑝𝑝sin𝛼𝛼𝛼𝛼 + 𝑞𝑞𝑞𝑞cos𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                    (27) 

In the formulas obtained above, the integrals are calculated numerically. To do this, we 
introduce dimensionless quantities: 

�̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅2
, �̄�𝑃𝑃𝑃𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑃𝑃𝑃𝑃𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅
,  �̄�𝑞𝑞𝑞 = 𝑞𝑞𝑞𝑞

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑣𝑣𝑣𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑣𝑣𝑣𝑣𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅
, 

�̄�𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼 ) (⁄ 𝑎𝑎𝑎𝑎𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚), �̄�𝜉𝜉𝜉𝑒𝑒𝑒𝑒,𝑦𝑦𝑦𝑦 = 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒,𝑦𝑦𝑦𝑦

𝑎𝑎𝑎𝑎
,𝛥𝛥𝛥𝛥ℎ̄ = 𝛥𝛥𝛥𝛥ℎ

𝑅𝑅𝑅𝑅
,𝜆𝜆𝜆𝜆 = ℎ0

𝑅𝑅𝑅𝑅
. 

The above basic equations in dimensionless quantities will take the form: 

�̄�𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 1
𝜆𝜆𝜆𝜆+1−cos𝑑𝑑𝑑𝑑

(sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

+ 𝜒𝜒𝜒𝜒
2

cos𝛼𝛼𝛼𝛼)�̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒, 

�̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = exp(−∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑
0 )∫ �̄�𝜓𝜓𝜓2exp(∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0
𝑑𝑑𝑑𝑑
0 , 

�̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 1
𝜆𝜆𝜆𝜆

exp(−μα
𝜆𝜆𝜆𝜆

) �(1 + 𝜇𝜇𝜇𝜇2)∫ �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(μα
𝜆𝜆𝜆𝜆

)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑
0 + (𝜒𝜒𝜒𝜒

2
+ 𝜇𝜇𝜇𝜇)∫ �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(μα

𝜆𝜆𝜆𝜆
)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0 �, 

�̄�𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = tg𝛼𝛼𝛼𝛼, �̄�𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2tg𝛼𝛼𝛼𝛼/√3, 

�̄�𝑝𝑝𝑝 = �̄�𝑑𝑑𝑑𝑦𝑦𝑦𝑦−�̄�𝑑𝑑𝑑𝑒𝑒𝑒𝑒
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

,   �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = ( 2
√3

)𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛tg𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼(−ln|cos𝛼𝛼𝛼𝛼|)𝑛𝑛𝑛𝑛 ,  

𝛥𝛥𝛥𝛥ℎ̄ = [1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄ ,  𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥 ℎ̄ 2⁄ � ., 

�̄�𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇 ∫ �̄�𝑝𝑝𝑝𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 , 

�̄�𝑃𝑃𝑃𝑧𝑧𝑧𝑧 = ∫ (�̄�𝑝𝑝𝑝cos𝛼𝛼𝛼𝛼 − �̄�𝑞𝑞𝑞sin𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 , 

�̄�𝑃𝑃𝑃𝑦𝑦𝑦𝑦 = ∫ (�̄�𝑝𝑝𝑝sin𝛼𝛼𝛼𝛼 + �̄�𝑞𝑞𝑞cos𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 . 

Conclusion. The creep theory, based on elementary tests of the material, provides an 
opportunity to describe the process of deformations of the material in the general case of time-
varying stresses and deformations, and also provides a definition of the law of deformation 
change according to a given law of stress change. In a one-dimensional formulation, relatively 
general formulas are obtained for calculating the stress-strain state, pressure and friction forces 
on the contact surface, forces and moments acting on the roller. 
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                                                 (25)

Projection on the vertical axis of the force per unit length in the direction 
perpendicular to the drawing:

The moment of forces per unit length in the direction perpendicular to the drawing, 
assuming that the moment of contact pressure forces relative to the center of the roller can be 
neglected, is equal to: 

                                             𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇𝜔𝜔𝜔𝜔2 ∫ pd𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                                 (25) 

Projection on the vertical axis of the force per unit length in the direction perpendicular to 
the drawing: 

                                       𝑃𝑃𝑃𝑃𝑧𝑧𝑧𝑧 = 𝜔𝜔𝜔𝜔 ∫ (𝑝𝑝𝑝𝑝cos𝛼𝛼𝛼𝛼 − 𝑞𝑞𝑞𝑞sin𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                    (26) 

Projection on the horizontal axis of the force per unit length in the direction perpendicular 
to the drawing: 

                                      𝑃𝑃𝑃𝑃𝑦𝑦𝑦𝑦 = 𝜔𝜔𝜔𝜔 ∫ (𝑝𝑝𝑝𝑝sin𝛼𝛼𝛼𝛼 + 𝑞𝑞𝑞𝑞cos𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                    (27) 

In the formulas obtained above, the integrals are calculated numerically. To do this, we 
introduce dimensionless quantities: 

�̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅2
, �̄�𝑃𝑃𝑃𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑃𝑃𝑃𝑃𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅
,  �̄�𝑞𝑞𝑞 = 𝑞𝑞𝑞𝑞

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑣𝑣𝑣𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑣𝑣𝑣𝑣𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅
, 

�̄�𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼 ) (⁄ 𝑎𝑎𝑎𝑎𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚), �̄�𝜉𝜉𝜉𝑒𝑒𝑒𝑒,𝑦𝑦𝑦𝑦 = 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒,𝑦𝑦𝑦𝑦

𝑎𝑎𝑎𝑎
,𝛥𝛥𝛥𝛥ℎ̄ = 𝛥𝛥𝛥𝛥ℎ

𝑅𝑅𝑅𝑅
,𝜆𝜆𝜆𝜆 = ℎ0

𝑅𝑅𝑅𝑅
. 

The above basic equations in dimensionless quantities will take the form: 

�̄�𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 1
𝜆𝜆𝜆𝜆+1−cos𝑑𝑑𝑑𝑑

(sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

+ 𝜒𝜒𝜒𝜒
2

cos𝛼𝛼𝛼𝛼)�̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒, 

�̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = exp(−∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑
0 )∫ �̄�𝜓𝜓𝜓2exp(∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0
𝑑𝑑𝑑𝑑
0 , 

�̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 1
𝜆𝜆𝜆𝜆

exp(−μα
𝜆𝜆𝜆𝜆

) �(1 + 𝜇𝜇𝜇𝜇2)∫ �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(μα
𝜆𝜆𝜆𝜆

)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑
0 + (𝜒𝜒𝜒𝜒

2
+ 𝜇𝜇𝜇𝜇)∫ �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(μα

𝜆𝜆𝜆𝜆
)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0 �, 

�̄�𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = tg𝛼𝛼𝛼𝛼, �̄�𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2tg𝛼𝛼𝛼𝛼/√3, 

�̄�𝑝𝑝𝑝 = �̄�𝑑𝑑𝑑𝑦𝑦𝑦𝑦−�̄�𝑑𝑑𝑑𝑒𝑒𝑒𝑒
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

,   �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = ( 2
√3

)𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛tg𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼(−ln|cos𝛼𝛼𝛼𝛼|)𝑛𝑛𝑛𝑛 ,  

𝛥𝛥𝛥𝛥ℎ̄ = [1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄ ,  𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥 ℎ̄ 2⁄ � ., 

�̄�𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇 ∫ �̄�𝑝𝑝𝑝𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 , 

�̄�𝑃𝑃𝑃𝑧𝑧𝑧𝑧 = ∫ (�̄�𝑝𝑝𝑝cos𝛼𝛼𝛼𝛼 − �̄�𝑞𝑞𝑞sin𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 , 

�̄�𝑃𝑃𝑃𝑦𝑦𝑦𝑦 = ∫ (�̄�𝑝𝑝𝑝sin𝛼𝛼𝛼𝛼 + �̄�𝑞𝑞𝑞cos𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 . 

Conclusion. The creep theory, based on elementary tests of the material, provides an 
opportunity to describe the process of deformations of the material in the general case of time-
varying stresses and deformations, and also provides a definition of the law of deformation 
change according to a given law of stress change. In a one-dimensional formulation, relatively 
general formulas are obtained for calculating the stress-strain state, pressure and friction forces 
on the contact surface, forces and moments acting on the roller. 
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Projection on the horizontal axis of the force per unit length in the direction 
perpendicular to the drawing:

The moment of forces per unit length in the direction perpendicular to the drawing, 
assuming that the moment of contact pressure forces relative to the center of the roller can be 
neglected, is equal to: 

                                             𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇𝜔𝜔𝜔𝜔2 ∫ pd𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                                 (25) 

Projection on the vertical axis of the force per unit length in the direction perpendicular to 
the drawing: 

                                       𝑃𝑃𝑃𝑃𝑧𝑧𝑧𝑧 = 𝜔𝜔𝜔𝜔 ∫ (𝑝𝑝𝑝𝑝cos𝛼𝛼𝛼𝛼 − 𝑞𝑞𝑞𝑞sin𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                    (26) 

Projection on the horizontal axis of the force per unit length in the direction perpendicular 
to the drawing: 

                                      𝑃𝑃𝑃𝑃𝑦𝑦𝑦𝑦 = 𝜔𝜔𝜔𝜔 ∫ (𝑝𝑝𝑝𝑝sin𝛼𝛼𝛼𝛼 + 𝑞𝑞𝑞𝑞cos𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                    (27) 

In the formulas obtained above, the integrals are calculated numerically. To do this, we 
introduce dimensionless quantities: 

�̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅2
, �̄�𝑃𝑃𝑃𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑃𝑃𝑃𝑃𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅
,  �̄�𝑞𝑞𝑞 = 𝑞𝑞𝑞𝑞

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑣𝑣𝑣𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑣𝑣𝑣𝑣𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅
, 

�̄�𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼 ) (⁄ 𝑎𝑎𝑎𝑎𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚), �̄�𝜉𝜉𝜉𝑒𝑒𝑒𝑒,𝑦𝑦𝑦𝑦 = 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒,𝑦𝑦𝑦𝑦

𝑎𝑎𝑎𝑎
,𝛥𝛥𝛥𝛥ℎ̄ = 𝛥𝛥𝛥𝛥ℎ

𝑅𝑅𝑅𝑅
,𝜆𝜆𝜆𝜆 = ℎ0

𝑅𝑅𝑅𝑅
. 

The above basic equations in dimensionless quantities will take the form: 

�̄�𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 1
𝜆𝜆𝜆𝜆+1−cos𝑑𝑑𝑑𝑑

(sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

+ 𝜒𝜒𝜒𝜒
2

cos𝛼𝛼𝛼𝛼)�̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒, 

�̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = exp(−∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑
0 )∫ �̄�𝜓𝜓𝜓2exp(∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0
𝑑𝑑𝑑𝑑
0 , 

�̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 1
𝜆𝜆𝜆𝜆

exp(−μα
𝜆𝜆𝜆𝜆

) �(1 + 𝜇𝜇𝜇𝜇2)∫ �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(μα
𝜆𝜆𝜆𝜆

)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑
0 + (𝜒𝜒𝜒𝜒

2
+ 𝜇𝜇𝜇𝜇)∫ �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(μα

𝜆𝜆𝜆𝜆
)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0 �, 

�̄�𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = tg𝛼𝛼𝛼𝛼, �̄�𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2tg𝛼𝛼𝛼𝛼/√3, 

�̄�𝑝𝑝𝑝 = �̄�𝑑𝑑𝑑𝑦𝑦𝑦𝑦−�̄�𝑑𝑑𝑑𝑒𝑒𝑒𝑒
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

,   �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = ( 2
√3

)𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛tg𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼(−ln|cos𝛼𝛼𝛼𝛼|)𝑛𝑛𝑛𝑛 ,  

𝛥𝛥𝛥𝛥ℎ̄ = [1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄ ,  𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥 ℎ̄ 2⁄ � ., 

�̄�𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇 ∫ �̄�𝑝𝑝𝑝𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 , 

�̄�𝑃𝑃𝑃𝑧𝑧𝑧𝑧 = ∫ (�̄�𝑝𝑝𝑝cos𝛼𝛼𝛼𝛼 − �̄�𝑞𝑞𝑞sin𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 , 

�̄�𝑃𝑃𝑃𝑦𝑦𝑦𝑦 = ∫ (�̄�𝑝𝑝𝑝sin𝛼𝛼𝛼𝛼 + �̄�𝑞𝑞𝑞cos𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 . 

Conclusion. The creep theory, based on elementary tests of the material, provides an 
opportunity to describe the process of deformations of the material in the general case of time-
varying stresses and deformations, and also provides a definition of the law of deformation 
change according to a given law of stress change. In a one-dimensional formulation, relatively 
general formulas are obtained for calculating the stress-strain state, pressure and friction forces 
on the contact surface, forces and moments acting on the roller. 
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                                   (27)

In the formulas obtained above, the integrals are calculated numerically. To do 
this, we introduce dimensionless quantities:

The moment of forces per unit length in the direction perpendicular to the drawing, 
assuming that the moment of contact pressure forces relative to the center of the roller can be 
neglected, is equal to: 

                                             𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇𝜔𝜔𝜔𝜔2 ∫ pd𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                                 (25) 

Projection on the vertical axis of the force per unit length in the direction perpendicular to 
the drawing: 

                                       𝑃𝑃𝑃𝑃𝑧𝑧𝑧𝑧 = 𝜔𝜔𝜔𝜔 ∫ (𝑝𝑝𝑝𝑝cos𝛼𝛼𝛼𝛼 − 𝑞𝑞𝑞𝑞sin𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                    (26) 

Projection on the horizontal axis of the force per unit length in the direction perpendicular 
to the drawing: 

                                      𝑃𝑃𝑃𝑃𝑦𝑦𝑦𝑦 = 𝜔𝜔𝜔𝜔 ∫ (𝑝𝑝𝑝𝑝sin𝛼𝛼𝛼𝛼 + 𝑞𝑞𝑞𝑞cos𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                    (27) 

In the formulas obtained above, the integrals are calculated numerically. To do this, we 
introduce dimensionless quantities: 

�̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅2
, �̄�𝑃𝑃𝑃𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑃𝑃𝑃𝑃𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅
,  �̄�𝑞𝑞𝑞 = 𝑞𝑞𝑞𝑞

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑣𝑣𝑣𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑣𝑣𝑣𝑣𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅
, 

�̄�𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼 ) (⁄ 𝑎𝑎𝑎𝑎𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚), �̄�𝜉𝜉𝜉𝑒𝑒𝑒𝑒,𝑦𝑦𝑦𝑦 = 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒,𝑦𝑦𝑦𝑦

𝑎𝑎𝑎𝑎
,𝛥𝛥𝛥𝛥ℎ̄ = 𝛥𝛥𝛥𝛥ℎ

𝑅𝑅𝑅𝑅
,𝜆𝜆𝜆𝜆 = ℎ0

𝑅𝑅𝑅𝑅
. 

The above basic equations in dimensionless quantities will take the form: 

�̄�𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 1
𝜆𝜆𝜆𝜆+1−cos𝑑𝑑𝑑𝑑

(sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

+ 𝜒𝜒𝜒𝜒
2

cos𝛼𝛼𝛼𝛼)�̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒, 

�̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = exp(−∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑
0 )∫ �̄�𝜓𝜓𝜓2exp(∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0
𝑑𝑑𝑑𝑑
0 , 

�̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 1
𝜆𝜆𝜆𝜆

exp(−μα
𝜆𝜆𝜆𝜆

) �(1 + 𝜇𝜇𝜇𝜇2)∫ �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(μα
𝜆𝜆𝜆𝜆

)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑
0 + (𝜒𝜒𝜒𝜒

2
+ 𝜇𝜇𝜇𝜇)∫ �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(μα

𝜆𝜆𝜆𝜆
)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0 �, 

�̄�𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = tg𝛼𝛼𝛼𝛼, �̄�𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2tg𝛼𝛼𝛼𝛼/√3, 

�̄�𝑝𝑝𝑝 = �̄�𝑑𝑑𝑑𝑦𝑦𝑦𝑦−�̄�𝑑𝑑𝑑𝑒𝑒𝑒𝑒
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

,   �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = ( 2
√3

)𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛tg𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼(−ln|cos𝛼𝛼𝛼𝛼|)𝑛𝑛𝑛𝑛 ,  

𝛥𝛥𝛥𝛥ℎ̄ = [1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄ ,  𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥 ℎ̄ 2⁄ � ., 

�̄�𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇 ∫ �̄�𝑝𝑝𝑝𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 , 

�̄�𝑃𝑃𝑃𝑧𝑧𝑧𝑧 = ∫ (�̄�𝑝𝑝𝑝cos𝛼𝛼𝛼𝛼 − �̄�𝑞𝑞𝑞sin𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 , 

�̄�𝑃𝑃𝑃𝑦𝑦𝑦𝑦 = ∫ (�̄�𝑝𝑝𝑝sin𝛼𝛼𝛼𝛼 + �̄�𝑞𝑞𝑞cos𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 . 

Conclusion. The creep theory, based on elementary tests of the material, provides an 
opportunity to describe the process of deformations of the material in the general case of time-
varying stresses and deformations, and also provides a definition of the law of deformation 
change according to a given law of stress change. In a one-dimensional formulation, relatively 
general formulas are obtained for calculating the stress-strain state, pressure and friction forces 
on the contact surface, forces and moments acting on the roller. 
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The above basic equations in dimensionless quantities will take the form:

The moment of forces per unit length in the direction perpendicular to the drawing, 
assuming that the moment of contact pressure forces relative to the center of the roller can be 
neglected, is equal to: 

                                             𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇𝜔𝜔𝜔𝜔2 ∫ pd𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                                 (25) 

Projection on the vertical axis of the force per unit length in the direction perpendicular to 
the drawing: 

                                       𝑃𝑃𝑃𝑃𝑧𝑧𝑧𝑧 = 𝜔𝜔𝜔𝜔 ∫ (𝑝𝑝𝑝𝑝cos𝛼𝛼𝛼𝛼 − 𝑞𝑞𝑞𝑞sin𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                    (26) 

Projection on the horizontal axis of the force per unit length in the direction perpendicular 
to the drawing: 

                                      𝑃𝑃𝑃𝑃𝑦𝑦𝑦𝑦 = 𝜔𝜔𝜔𝜔 ∫ (𝑝𝑝𝑝𝑝sin𝛼𝛼𝛼𝛼 + 𝑞𝑞𝑞𝑞cos𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                    (27) 

In the formulas obtained above, the integrals are calculated numerically. To do this, we 
introduce dimensionless quantities: 

�̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅2
, �̄�𝑃𝑃𝑃𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑃𝑃𝑃𝑃𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅
,  �̄�𝑞𝑞𝑞 = 𝑞𝑞𝑞𝑞

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑣𝑣𝑣𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑣𝑣𝑣𝑣𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅
, 

�̄�𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼 ) (⁄ 𝑎𝑎𝑎𝑎𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚), �̄�𝜉𝜉𝜉𝑒𝑒𝑒𝑒,𝑦𝑦𝑦𝑦 = 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒,𝑦𝑦𝑦𝑦

𝑎𝑎𝑎𝑎
,𝛥𝛥𝛥𝛥ℎ̄ = 𝛥𝛥𝛥𝛥ℎ

𝑅𝑅𝑅𝑅
,𝜆𝜆𝜆𝜆 = ℎ0

𝑅𝑅𝑅𝑅
. 

The above basic equations in dimensionless quantities will take the form: 

�̄�𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 1
𝜆𝜆𝜆𝜆+1−cos𝑑𝑑𝑑𝑑

(sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

+ 𝜒𝜒𝜒𝜒
2

cos𝛼𝛼𝛼𝛼)�̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒, 

�̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = exp(−∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑
0 )∫ �̄�𝜓𝜓𝜓2exp(∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0
𝑑𝑑𝑑𝑑
0 , 

�̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 1
𝜆𝜆𝜆𝜆

exp(−μα
𝜆𝜆𝜆𝜆

) �(1 + 𝜇𝜇𝜇𝜇2)∫ �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(μα
𝜆𝜆𝜆𝜆

)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑
0 + (𝜒𝜒𝜒𝜒

2
+ 𝜇𝜇𝜇𝜇)∫ �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(μα

𝜆𝜆𝜆𝜆
)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0 �, 

�̄�𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = tg𝛼𝛼𝛼𝛼, �̄�𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2tg𝛼𝛼𝛼𝛼/√3, 

�̄�𝑝𝑝𝑝 = �̄�𝑑𝑑𝑑𝑦𝑦𝑦𝑦−�̄�𝑑𝑑𝑑𝑒𝑒𝑒𝑒
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

,   �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = ( 2
√3

)𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛tg𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼(−ln|cos𝛼𝛼𝛼𝛼|)𝑛𝑛𝑛𝑛 ,  

𝛥𝛥𝛥𝛥ℎ̄ = [1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄ ,  𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥 ℎ̄ 2⁄ � ., 

�̄�𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇 ∫ �̄�𝑝𝑝𝑝𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 , 

�̄�𝑃𝑃𝑃𝑧𝑧𝑧𝑧 = ∫ (�̄�𝑝𝑝𝑝cos𝛼𝛼𝛼𝛼 − �̄�𝑞𝑞𝑞sin𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 , 

�̄�𝑃𝑃𝑃𝑦𝑦𝑦𝑦 = ∫ (�̄�𝑝𝑝𝑝sin𝛼𝛼𝛼𝛼 + �̄�𝑞𝑞𝑞cos𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 . 

Conclusion. The creep theory, based on elementary tests of the material, provides an 
opportunity to describe the process of deformations of the material in the general case of time-
varying stresses and deformations, and also provides a definition of the law of deformation 
change according to a given law of stress change. In a one-dimensional formulation, relatively 
general formulas are obtained for calculating the stress-strain state, pressure and friction forces 
on the contact surface, forces and moments acting on the roller. 

 
References 
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The moment of forces per unit length in the direction perpendicular to the drawing, 
assuming that the moment of contact pressure forces relative to the center of the roller can be 
neglected, is equal to: 

                                             𝑀𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇𝜔𝜔𝜔𝜔2 ∫ pd𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                                 (25) 

Projection on the vertical axis of the force per unit length in the direction perpendicular to 
the drawing: 

                                       𝑃𝑃𝑃𝑃𝑧𝑧𝑧𝑧 = 𝜔𝜔𝜔𝜔 ∫ (𝑝𝑝𝑝𝑝cos𝛼𝛼𝛼𝛼 − 𝑞𝑞𝑞𝑞sin𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                    (26) 

Projection on the horizontal axis of the force per unit length in the direction perpendicular 
to the drawing: 

                                      𝑃𝑃𝑃𝑃𝑦𝑦𝑦𝑦 = 𝜔𝜔𝜔𝜔 ∫ (𝑝𝑝𝑝𝑝sin𝛼𝛼𝛼𝛼 + 𝑞𝑞𝑞𝑞cos𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0                                    (27) 

In the formulas obtained above, the integrals are calculated numerically. To do this, we 
introduce dimensionless quantities: 

�̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅2
, �̄�𝑃𝑃𝑃𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑃𝑃𝑃𝑃𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅
,  �̄�𝑞𝑞𝑞 = 𝑞𝑞𝑞𝑞

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , �̄�𝑣𝑣𝑣𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧 = 𝑣𝑣𝑣𝑣𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧

𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅
, 

�̄�𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 𝜓𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼 ) (⁄ 𝑎𝑎𝑎𝑎𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚), �̄�𝜉𝜉𝜉𝑒𝑒𝑒𝑒,𝑦𝑦𝑦𝑦 = 𝜉𝜉𝜉𝜉𝑒𝑒𝑒𝑒,𝑦𝑦𝑦𝑦

𝑎𝑎𝑎𝑎
,𝛥𝛥𝛥𝛥ℎ̄ = 𝛥𝛥𝛥𝛥ℎ

𝑅𝑅𝑅𝑅
,𝜆𝜆𝜆𝜆 = ℎ0

𝑅𝑅𝑅𝑅
. 

The above basic equations in dimensionless quantities will take the form: 

�̄�𝜓𝜓𝜓2(𝛼𝛼𝛼𝛼) = 1
𝜆𝜆𝜆𝜆+1−cos𝑑𝑑𝑑𝑑

(sin𝑑𝑑𝑑𝑑+𝜇𝜇𝜇𝜇cos𝑑𝑑𝑑𝑑
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

+ 𝜒𝜒𝜒𝜒
2

cos𝛼𝛼𝛼𝛼)�̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒, 

�̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = exp(−∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑
0 )∫ �̄�𝜓𝜓𝜓2exp(∫ 𝜓𝜓𝜓𝜓1𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0
𝑑𝑑𝑑𝑑
0 , 

�̄�𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 1
𝜆𝜆𝜆𝜆

exp(−μα
𝜆𝜆𝜆𝜆

) �(1 + 𝜇𝜇𝜇𝜇2)∫ �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(μα
𝜆𝜆𝜆𝜆

)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑
0 + (𝜒𝜒𝜒𝜒

2
+ 𝜇𝜇𝜇𝜇)∫ �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒exp(μα

𝜆𝜆𝜆𝜆
)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑

0 �, 

�̄�𝜉𝜉𝜉𝑦𝑦𝑦𝑦 = tg𝛼𝛼𝛼𝛼, �̄�𝜉𝜉𝜉𝑒𝑒𝑒𝑒 = 2tg𝛼𝛼𝛼𝛼/√3, 

�̄�𝑝𝑝𝑝 = �̄�𝑑𝑑𝑑𝑦𝑦𝑦𝑦−�̄�𝑑𝑑𝑑𝑒𝑒𝑒𝑒
1−𝜇𝜇𝜇𝜇tg𝑑𝑑𝑑𝑑

,   �̄�𝜎𝜎𝜎𝑒𝑒𝑒𝑒 = ( 2
√3

)𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛tg𝑚𝑚𝑚𝑚𝛼𝛼𝛼𝛼(−ln|cos𝛼𝛼𝛼𝛼|)𝑛𝑛𝑛𝑛 ,  

𝛥𝛥𝛥𝛥ℎ̄ = [1 − exp(2𝜀𝜀𝜀𝜀𝑦𝑦𝑦𝑦0) ] 2⁄ ,  𝛼𝛼𝛼𝛼0 = arcsin �2�𝛥𝛥𝛥𝛥 ℎ̄ 2⁄ � ., 

�̄�𝑀𝑀𝑀 = 𝜇𝜇𝜇𝜇 ∫ �̄�𝑝𝑝𝑝𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 , 

�̄�𝑃𝑃𝑃𝑧𝑧𝑧𝑧 = ∫ (�̄�𝑝𝑝𝑝cos𝛼𝛼𝛼𝛼 − �̄�𝑞𝑞𝑞sin𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 , 

�̄�𝑃𝑃𝑃𝑦𝑦𝑦𝑦 = ∫ (�̄�𝑝𝑝𝑝sin𝛼𝛼𝛼𝛼 + �̄�𝑞𝑞𝑞cos𝛼𝛼𝛼𝛼)𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑0
0 . 

Conclusion. The creep theory, based on elementary tests of the material, provides an 
opportunity to describe the process of deformations of the material in the general case of time-
varying stresses and deformations, and also provides a definition of the law of deformation 
change according to a given law of stress change. In a one-dimensional formulation, relatively 
general formulas are obtained for calculating the stress-strain state, pressure and friction forces 
on the contact surface, forces and moments acting on the roller. 
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